Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach
Dongjae Lim,
Lingfei Li and
Vadim Linetsky
Papers from arXiv.org
Abstract:
We propose an efficient method to evaluate callable and putable bonds under a wide class of interest rate models, including the popular short rate diffusion models, as well as their time changed versions with jumps. The method is based on the eigenfunction expansion of the pricing operator. Given the set of call and put dates, the callable and putable bond pricing function is the value function of a stochastic game with stopping times. Under some technical conditions, it is shown to have an eigenfunction expansion in eigenfunctions of the pricing operator with the expansion coefficients determined through a backward recursion. For popular short rate diffusion models, such as CIR, Vasicek, 3/2, the method is orders of magnitude faster than the alternative approaches in the literature. In contrast to the alternative approaches in the literature that have so far been limited to diffusions, the method is equally applicable to short rate jump-diffusion and pure jump models constructed from diffusion models by Bochner's subordination with a L\'{e}vy subordinator.
Date: 2012-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://arxiv.org/pdf/1206.5046 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1206.5046
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().