A Utility Framework for Bounded-Loss Market Makers
Yiling Chen and
David M Pennock
Papers from arXiv.org
Abstract:
We introduce a class of utility-based market makers that always accept orders at their risk-neutral prices. We derive necessary and sufficient conditions for such market makers to have bounded loss. We prove that hyperbolic absolute risk aversion utility market makers are equivalent to weighted pseudospherical scoring rule market makers. In particular, Hanson's logarithmic scoring rule market maker corresponds to a negative exponential utility market maker in our framework. We describe a third equivalent formulation based on maintaining a cost function that seems most natural for implementation purposes, and we illustrate how to translate among the three equivalent formulations. We examine the tradeoff between the market's liquidity and the market maker's worst-case loss. For a fixed bound on worst-case loss, some market makers exhibit greater liquidity near uniform prices and some exhibit greater liquidity near extreme prices, but no market maker can exhibit uniformly greater liquidity in all regimes. For a fixed minimum liquidity level, we give the lower bound of market maker's worst-case loss under some regularity conditions.
Date: 2012-06
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/1206.5252 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1206.5252
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().