EconPapers    
Economics at your fingertips  
 

Signal processing with Levy information

Dorje C. Brody, Lane P. Hughston and Xun Yang

Papers from arXiv.org

Abstract: Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "information process". In this paper we develop a theory of such Levy information processes. The underlying Levy process, which we call the fiducial process, represents the "noise type". Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.

Date: 2012-07, Revised 2012-09
References: Add references at CitEc
Citations:

Published in Proc. R. Soc. London A 469, 20120433 (2013)

Downloads: (external link)
http://arxiv.org/pdf/1207.4028 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1207.4028

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1207.4028