Bouchaud-M\'ezard model on a random network
Takashi Ichinomiya
Papers from arXiv.org
Abstract:
We studied the Bouchaud-M\'ezard(BM) model, which was introduced to explain Pareto's law in a real economy, on a random network. Using "adiabatic and independent" assumptions, we analytically obtained the stationary probability distribution function of wealth. The results shows that wealth-condensation, indicated by the divergence of the variance of wealth, occurs at a larger $J$ than that obtained by the mean-field theory, where $J$ represents the strength of interaction between agents. We compared our results with numerical simulation results and found that they were in good agreement.
Date: 2012-09
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Published in Physical Review E, 86, 036111(2012)
Downloads: (external link)
http://arxiv.org/pdf/1209.2467 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1209.2467
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().