EconPapers    
Economics at your fingertips  
 

An Approximate Solution Method for Large Risk-Averse Markov Decision Processes

Marek Petrik and Dharmashankar Subramanian

Papers from arXiv.org

Abstract: Stochastic domains often involve risk-averse decision makers. While recent work has focused on how to model risk in Markov decision processes using risk measures, it has not addressed the problem of solving large risk-averse formulations. In this paper, we propose and analyze a new method for solving large risk-averse MDPs with hybrid continuous-discrete state spaces and continuous action spaces. The proposed method iteratively improves a bound on the value function using a linearity structure of the MDP. We demonstrate the utility and properties of the method on a portfolio optimization problem.

Date: 2012-10
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1210.4901 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1210.4901

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1210.4901