Online Portfolio Selection: A Survey
Bin Li and
Steven C. H. Hoi
Papers from arXiv.org
Abstract:
Online portfolio selection is a fundamental problem in computational finance, which has been extensively studied across several research communities, including finance, statistics, artificial intelligence, machine learning, and data mining, etc. This article aims to provide a comprehensive survey and a structural understanding of published online portfolio selection techniques. From an online machine learning perspective, we first formulate online portfolio selection as a sequential decision problem, and then survey a variety of state-of-the-art approaches, which are grouped into several major categories, including benchmarks, "Follow-the-Winner" approaches, "Follow-the-Loser" approaches, "Pattern-Matching" based approaches, and "Meta-Learning Algorithms". In addition to the problem formulation and related algorithms, we also discuss the relationship of these algorithms with the Capital Growth theory in order to better understand the similarities and differences of their underlying trading ideas. This article aims to provide a timely and comprehensive survey for both machine learning and data mining researchers in academia and quantitative portfolio managers in the financial industry to help them understand the state-of-the-art and facilitate their research and practical applications. We also discuss some open issues and evaluate some emerging new trends for future research directions.
Date: 2012-12, Revised 2013-05
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1212.2129 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1212.2129
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().