EconPapers    
Economics at your fingertips  
 

Strategy switches and co-action equilibria in a minority game

V. Sasidevan and Deepak Dhar

Papers from arXiv.org

Abstract: We propose an analytically tractable variation of the minority game in which rational agents use probabilistic strategies. In our model, $N$ agents choose between two alternatives repeatedly, and those who are in the minority get a pay-off 1, others zero. The agents optimize the expectation value of their discounted future pay-off, the discount parameter being $\lambda$. We propose an alternative to the standard Nash equilibrium, called co-action equilibrium, which gives higher expected pay-off for all agents. The optimal choice of probabilities of different actions are determined exactly in terms of simple self -consistent equations. The optimal strategy is characterized by $N$ real parameters, which are non-analytic functions of $\lambda$, even for a finite number of agents. The solution for $N \leq 7$ is worked out explicitly indicating the structure of the solution for larger $N$. For large enough future time horizon, the optimal strategy switches from random choice to a win-stay lose-shift strategy, with the shift probability depending on the current state and $\lambda$.

Date: 2012-12, Revised 2014-02
New Economics Papers: this item is included in nep-cse, nep-gth and nep-mic
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1212.6601 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1212.6601

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1212.6601