EconPapers    
Economics at your fingertips  
 

Efficient Importance Sampling for Rare Event Simulation with Applications

Cheng-Der Fuh, Huei-Wen Teng and Ren-Her Wang

Papers from arXiv.org

Abstract: Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator within a parametric family, we propose a general account for finding the optimal tilting measure. To this end, when the moment generating function of the underlying distribution exists, we obtain a simple and explicit expression of the optimal alternative distribution. The proposed algorithm is quite general to cover many interesting examples, such as normal distribution, noncentral $\chi^2$ distribution, and compound Poisson processes. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management and bootstrap confidence regions in statistical inferences.

Date: 2013-02
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1302.0583 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1302.0583

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1302.0583