Dynamic Credit Investment in Partially Observed Markets
Agostino Capponi,
Jose Enrique Figueroa Lopez and
Andrea Pascucci
Papers from arXiv.org
Abstract:
We consider the problem of maximizing expected utility for a power investor who can allocate his wealth in a stock, a defaultable security, and a money market account. The dynamics of these security prices are governed by geometric Brownian motions modulated by a hidden continuous time finite state Markov chain. We reduce the partially observed stochastic control problem to a complete observation risk sensitive control problem via the filtered regime switching probabilities. We separate the latter into pre-default and post-default dynamic optimization subproblems, and obtain two coupled Hamilton-Jacobi-Bellman (HJB) partial differential equations. We prove existence and uniqueness of a globally bounded classical solution to each HJB equation, and give the corresponding verification theorem. We provide a numerical analysis showing that the investor increases his holdings in stock as the filter probability of being in high growth regimes increases, and decreases his credit risk exposure when the filter probability of being in high default risk regimes gets larger.
Date: 2013-03, Revised 2014-06
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1303.2950 Latest version (application/pdf)
Related works:
Journal Article: Dynamic credit investment in partially observed markets (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1303.2950
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().