EconPapers    
Economics at your fingertips  
 

Hedging without sweat: a genetic programming approach

Terje Lensberg and Klaus Reiner Schenk-Hopp\'e

Papers from arXiv.org

Abstract: Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.

Date: 2013-05
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1305.6762 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1305.6762

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1305.6762