Heavy tailed time series with extremal independence
Rafal Kulik and
Philippe Soulier
Papers from arXiv.org
Abstract:
We consider strictly stationary heavy tailed time series whose finite-dimensional exponent measures are concentrated on axes, and hence their extremal properties cannot be tackled using classical multivariate regular variation that is suitable for time series with extremal dependence. We recover relevant information about limiting behavior of time series with extremal independence by introducing a sequence of scaling functions and conditional scaling exponent. Both quantities provide more information about joint extremes than a widely used tail dependence coefficient. We calculate the scaling functions and the scaling exponent for variety of models, including Markov chains, exponential autoregressive model, stochastic volatility with heavy tailed innovations or volatility.
Date: 2013-07, Revised 2014-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1307.1501 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1307.1501
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().