A Benchmark Approach to Risk-Minimization under Partial Information
Claudia Ceci,
Katia Colaneri and
Alessandra Cretarola
Papers from arXiv.org
Abstract:
In this paper we study a risk-minimizing hedging problem for a semimartingale incomplete financial market where d+1 assets are traded continuously and whose price is expressed in units of the num\'{e}raire portfolio. According to the so-called benchmark approach, we investigate the (benchmarked) risk-minimizing strategy in the case where there are restrictions on the available information. More precisely, we characterize the optimal strategy as the integrand appearing in the Galtchouk-Kunita-Watanabe decomposition of the benchmarked claim under partial information and provide its description in terms of the integrands in the classical Galtchouk-Kunita-Watanabe decomposition under full information via dual predictable projections. Finally, we apply the results in the case of a Markovian jump-diffusion driven market model where the assets prices dynamics depend on a stochastic factor which is not observable by investors.
Date: 2013-07
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1307.6036 Latest version (application/pdf)
Related works:
Journal Article: A benchmark approach to risk-minimization under partial information (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1307.6036
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().