EconPapers    
Economics at your fingertips  
 

Is it possible to predict long-term success with k-NN? Case Study of four market indices (FTSE100, DAX, HANGSENG, NASDAQ)

Y. Shi, A. N. Gorban and T. Y. Yang

Papers from arXiv.org

Abstract: This case study tests the possibility of prediction for "success" (or "winner") components of four stock & shares market indices in a time period of three years from 02-Jul-2009 to 29-Jun-2012.We compare their performance ain two time frames: initial frame three months at the beginning (02/06/2009-30/09/2009) and the final three month frame (02/04/2012-29/06/2012). To label the components, average price ratio between two time frames in descending order is computed. The average price ratio is defined as the ratio between the mean prices of the beginning and final time period. The "winner" components are referred to the top one third of total components in the same order as average price ratio it means the mean price of final time period is relatively higher than the beginning time period. The "loser" components are referred to the last one third of total components in the same order as they have higher mean prices of beginning time period. We analyse, is there any information about the winner-looser separation in the initial fragments of the daily closing prices log-returns time series. The Leave-One-Out Cross-Validation with k-NN algorithm is applied on the daily log-return of components using a distance and proximity in the experiment. By looking at the error analysis, it shows that for HANGSENG and DAX index, there are clear signs of possibility to evaluate the probability of long-term success. The correlation distance matrix histograms and 2-D/3-D elastic maps generated from ViDaExpert show that the winner components are closer to each other and winner/loser components are separable on elastic maps for HANGSENG and DAX index while for the negative possibility indices, there is no sign of separation.

Date: 2013-07
New Economics Papers: this item is included in nep-cmp and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1307.8308 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1307.8308

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1307.8308