Optimal Dynamic Portfolio with Mean-CVaR Criterion
Jing Li and
Mingxin Xu
Papers from arXiv.org
Abstract:
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of Neyman-Pearson type binary solution. We add a constraint on expected return to investigate the Mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz type of risk reward problem at final horizon where variance as a measure of risk is replaced by CVaR. Based on the complete market assumption, we give an analytical solution in general. The novelty of our solution is that it is no longer Neyman-Pearson type where the final optimal portfolio takes only two values. Instead, in the case where the portfolio value is required to be bounded from above, the optimal solution takes three values; while in the case where there is no upper bound, the optimal investment portfolio does not exist, though a three-level portfolio still provides a sub-optimal solution.
Date: 2013-08
New Economics Papers: this item is included in nep-cba, nep-rmg and nep-spo
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1308.2324 Latest version (application/pdf)
Related works:
Journal Article: Optimal Dynamic Portfolio with Mean-CVaR Criterion (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1308.2324
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().