EconPapers    
Economics at your fingertips  
 

Learning from the past, predicting the statistics for the future, learning an evolving system

Daniel Levin, Terry Lyons and Hao Ni

Papers from arXiv.org

Abstract: We bring the theory of rough paths to the study of non-parametric statistics on streamed data. We discuss the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a stream. A certain graded feature set of a stream, known in the rough path literature as the signature, has a universality that allows formally, linear regression to be used to characterise the functional relationship between independent explanatory variables and the conditional distribution of the dependent response. This approach, via linear regression on the signature of the stream, is almost totally general, and yet it still allows explicit computation. The grading allows truncation of the feature set and so leads to an efficient local description for streams (rough paths). In the statistical context this method offers potentially significant, even transformational dimension reduction. By way of illustration, our approach is applied to stationary time series including the familiar AR model and ARCH model. In the numerical examples we examined, our predictions achieve similar accuracy to the Gaussian Process (GP) approach with much lower computational cost especially when the sample size is large.

Date: 2013-09, Revised 2016-03
New Economics Papers: this item is included in nep-cwa, nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://arxiv.org/pdf/1309.0260 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1309.0260

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1309.0260