A nested factor model for non-linear dependences in stock returns
R\'emy Chicheportiche and
Jean-Philippe Bouchaud
Papers from arXiv.org
Abstract:
The aim of our work is to propose a natural framework to account for all the empirically known properties of the multivariate distribution of stock returns. We define and study a "nested factor model", where the linear factors part is standard, but where the log-volatility of the linear factors and of the residuals are themselves endowed with a factor structure and residuals. We propose a calibration procedure to estimate these log-vol factors and the residuals. We find that whereas the number of relevant linear factors is relatively large (10 or more), only two or three log-vol factors emerge in our analysis of the data. In fact, a minimal model where only one log-vol factor is considered is already very satisfactory, as it accurately reproduces the properties of bivariate copulas, in particular the dependence of the medial-point on the linear correlation coefficient, as reported in Chicheportiche and Bouchaud (2012). We have tested the ability of the model to predict Out-of-Sample the risk of non-linear portfolios, and found that it performs significantly better than other schemes.
Date: 2013-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1309.3102 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1309.3102
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().