EconPapers    
Economics at your fingertips  
 

Non-linear dependences in finance

R\'emy Chicheportiche

Papers from arXiv.org

Abstract: The thesis is composed of three parts. Part I introduces the mathematical and statistical tools that are relevant for the study of dependences, as well as statistical tests of Goodness-of-fit for empirical probability distributions. I propose two extensions of usual tests when dependence is present in the sample data and when observations have a fat-tailed distribution. The financial content of the thesis starts in Part II. I present there my studies regarding the "cross-sectional" dependences among the time series of daily stock returns, i.e. the instantaneous forces that link several stocks together and make them behave somewhat collectively rather than purely independently. A calibration of a new factor model is presented here, together with a comparison to measurements on real data. Finally, Part III investigates the temporal dependences of single time series, using the same tools and measures of correlation. I propose two contributions to the study of the origin and description of "volatility clustering": one is a generalization of the ARCH-like feedback construction where the returns are self-exciting, and the other one is a more original description of self-dependences in terms of copulas. The latter can be formulated model-free and is not specific to financial time series. In fact, I also show here how concepts like recurrences, records, aftershocks and waiting times, that characterize the dynamics in a time series can be written in the unifying framework of the copula.

Date: 2013-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/1309.5073 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1309.5073

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1309.5073