EconPapers    
Economics at your fingertips  
 

There is a VaR beyond usual approximations

Marie Kratz

Papers from arXiv.org

Abstract: Basel II and Solvency 2 both use the Value-at-Risk (VaR) as the risk measure to compute the Capital Requirements. In practice, to calibrate the VaR, a normal approximation is often chosen for the unknown distribution of the yearly log returns of financial assets. This is usually justified by the use of the Central Limit Theorem (CLT), when assuming aggregation of independent and identically distributed (iid) observations in the portfolio model. Such a choice of modeling, in particular using light tail distributions, has proven during the crisis of 2008/2009 to be an inadequate approximation when dealing with the presence of extreme returns; as a consequence, it leads to a gross underestimation of the risks. The main objective of our study is to obtain the most accurate evaluations of the aggregated risks distribution and risk measures when working on financial or insurance data under the presence of heavy tail and to provide practical solutions for accurately estimating high quantiles of aggregated risks. We explore a new method, called Normex, to handle this problem numerically as well as theoretically, based on properties of upper order statistics. Normex provides accurate results, only weakly dependent upon the sample size and the tail index. We compare it with existing methods.

Date: 2013-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://arxiv.org/pdf/1311.0270 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1311.0270

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1311.0270