On time scaling of semivariance in a jump-diffusion process
Rodrigue Oeuvray and
Pascal Junod
Papers from arXiv.org
Abstract:
The aim of this paper is to examine the time scaling of the semivariance when returns are modeled by various types of jump-diffusion processes, including stochastic volatility models with jumps in returns and in volatility. In particular, we derive an exact formula for the semivariance when the volatility is kept constant, explaining how it should be scaled when considering a lower frequency. We also provide and justify the use of a generalization of the Ball-Torous approximation of a jump-diffusion process, this new model appearing to deliver a more accurate estimation of the downside risk. We use Markov Chain Monte Carlo (MCMC) methods to fit our stochastic volatility model. For the tests, we apply our methodology to a highly skewed set of returns based on the Barclays US High Yield Index, where we compare different time scalings for the semivariance. Our work shows that the square root of the time horizon seems to be a poor approximation in the context of semivariance and that our methodology based on jump-diffusion processes gives much better results.
Date: 2013-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1311.1122 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1311.1122
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().