Varadhan's formula, conditioned diffusions, and local volatilities
Stefano De Marco and
Peter Friz
Papers from arXiv.org
Abstract:
Motivated by marginals-mimicking results for It\^o processes via SDEs and by their applications to volatility modeling in finance, we discuss the weak convergence of the law of a hypoelliptic diffusions conditioned to belong to a target affine subspace at final time, namely $\mathcal{L}(Z_t|Y_t = y)$ if $X_{\cdot}=(Y_\cdot,Z_{\cdot})$. To do so, we revisit Varadhan-type estimates in a small-noise regime (as opposed to small-time), studying the density of the lower-dimensional component $Y$. The application to stochastic volatility models include the small-time and, for certain models, the large-strike asymptotics of the Gyongy-Dupire's local volatility function. The final product are asymptotic formulae that can (i) motivate parameterizations of the local volatility surface and (ii) be used to extrapolate local volatilities in a given model.
Date: 2013-11, Revised 2016-06
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1311.1545 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1311.1545
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().