EconPapers    
Economics at your fingertips  
 

Financial interaction networks inferred from traded volumes

Hongli Zeng, R\'emi Lemoy and Mikko Alava

Papers from arXiv.org

Abstract: In order to use the advanced inference techniques available for Ising models, we transform complex data (real vectors) into binary strings, by local averaging and thresholding. This transformation introduces parameters, which must be varied to characterize the behaviour of the system. The approach is illustrated on financial data, using three inference methods -- equilibrium, synchronous and asynchronous inference -- to construct functional connections between stocks. We show that the traded volume information is enough to obtain well known results about financial markets, which use however the presumably richer price information: collective behaviour ("market mode") and strong interactions within industry sectors. Synchronous and asynchronous Ising inference methods give results which are coherent with equilibrium ones, and more detailed since the obtained interaction networks are directed.

Date: 2013-11
New Economics Papers: this item is included in nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1311.3871 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1311.3871

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1311.3871