EconPapers    
Economics at your fingertips  
 

Stock Market Trend Analysis Using Hidden Markov Models

G. Kavitha, A. Udhayakumar and D. Nagarajan

Papers from arXiv.org

Abstract: Price movements of stock market are not totally random. In fact, what drives the financial market and what pattern financial time series follows have long been the interest that attracts economists, mathematicians and most recently computer scientists [17]. This paper gives an idea about the trend analysis of stock market behaviour using Hidden Markov Model (HMM). The trend once followed over a particular period will sure repeat in future. The one day difference in close value of stocks for a certain period is found and its corresponding steady state probability distribution values are determined. The pattern of the stock market behaviour is then decided based on these probability values for a particular time. The goal is to figure out the hidden state sequence given the observation sequence so that the trend can be analyzed using the steady state probability distribution( ) values. Six optimal hidden state sequences are generated and compared. The one day difference in close value when considered is found to give the best optimum state sequence.

Date: 2013-11
New Economics Papers: this item is included in nep-ets and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/1311.4771 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1311.4771

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1311.4771