Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
Tao Xiong,
Yukun Bao and
Zhongyi Hu
Papers from arXiv.org
Abstract:
Highly accurate interval forecasting of a stock price index is fundamental to successfully making a profit when making investment decisions, by providing a range of values rather than a point estimate. In this study, we investigate the possibility of forecasting an interval-valued stock price index series over short and long horizons using multi-output support vector regression (MSVR). Furthermore, this study proposes a firefly algorithm (FA)-based approach, built on the established MSVR, for determining the parameters of MSVR (abbreviated as FA-MSVR). Three globally traded broad market indices are used to compare the performance of the proposed FA-MSVR method with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of statistical criteria, economic criteria, and computational cost. In terms of statistical criteria, we compare the out-of-sample forecasting using goodness-of-forecast measures and testing approaches. In terms of economic criteria, we assess the relative forecast performance with a simple trading strategy. The results obtained in this study indicate that the proposed FA-MSVR method is a promising alternative for forecasting interval-valued financial time series.
Date: 2014-01
New Economics Papers: this item is included in nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Published in Knowledge-based Systems. 55, 2013:87-100
Downloads: (external link)
http://arxiv.org/pdf/1401.1916 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1401.1916
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().