The geometry of relative arbitrage
Soumik Pal and
Ting-Kam Leonard Wong
Papers from arXiv.org
Abstract:
Consider an equity market with $n$ stocks. The vector of proportions of the total market capitalizations that belong to each stock is called the market weight. The market weight defines the market portfolio which is a buy-and-hold portfolio representing the performance of the entire stock market. Consider a function that assigns a portfolio vector to each possible value of the market weight, and we perform self-financing trading using this portfolio function. We study the problem of characterizing functions such that the resulting portfolio will outperform the market portfolio in the long run under the conditions of diversity and sufficient volatility. No other assumption on the future behavior of stock prices is made. We prove that the only solutions are functionally generated portfolios in the sense of Fernholz. A second characterization is given as the optimal maps of a remarkable optimal transport problem. Both characterizations follow from a novel property of portfolios called multiplicative cyclical monotonicity.
Date: 2014-02, Revised 2015-07
New Economics Papers: this item is included in nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1402.3720 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1402.3720
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().