Accelerating Implicit Finite Difference Schemes Using a Hardware Optimized Tridiagonal Solver for FPGAs
Samuel Palmer
Papers from arXiv.org
Abstract:
We present a design and implementation of the Thomas algorithm optimized for hardware acceleration on an FPGA, the Thomas Core. The hardware-based algorithm combined with the custom data flow and low level parallelism available in an FPGA reduces the overall complexity from 8N down to 5N serial arithmetic operations, and almost halves the overall latency by parallelizing the two costly divisions. Combining this with a data streaming interface, we reduce memory overheads to 2 N-length vectors per N-tridiagonal system to be solved. The Thomas Core allows for multiple independent tridiagonal systems to be continuously solved in parallel, providing an efficient and scalable accelerator for many numerical computations. Finally we present applications for derivatives pricing problems using implicit finite difference schemes on an FPGA accelerated system and we investigate the use and limitations of fixed-point arithmetic in our algorithm.
Date: 2014-02, Revised 2015-10
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1402.5094 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1402.5094
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().