On the Frequency of Drawdowns for Brownian Motion Processes
David Landriault,
Bin Li and
Hongzhong Zhang
Papers from arXiv.org
Abstract:
Drawdowns measuring the decline in value from the historical running maxima over a given period of time, are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focus on the side of severity by studying the first drawdown over certain pre-specified size. In this paper, we extend the discussion by investigating the frequency of drawdowns, and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum {is reset or not}. For each type, we study the frequency rate of drawdowns, the Laplace transform of the $n$-th drawdown time, the distribution of the running maximum and the value process at the $n$-th drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.
Date: 2014-03
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1403.1183 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1403.1183
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().