EconPapers    
Economics at your fingertips  
 

High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

Dieter Hendricks, Diane Wilcox and Tim Gebbie

Papers from arXiv.org

Abstract: We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

Date: 2014-03, Revised 2015-08
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Published in S Afr J Sci. 2016;112(1/2), Art. #2014-0340, 9 pages

Downloads: (external link)
http://arxiv.org/pdf/1403.4099 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1403.4099

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1403.4099