Local martingale deflators for asset processes stopped at a default time $S^\tau$ or right before $S^{\tau-}$
Shiqi Song
Papers from arXiv.org
Abstract:
Let $\mathbb{F}\subset \mathbb{G}$ be two filtrations and $S$ be a $\mathbb{F}$ semimartingale possessing a $\mathbb{F}$ local martingale deflator. Consider $\tau$ a $\mathbb{G}$ stopping time. We study the problem whether $S^{\tau-}$ or $S^{\tau}$ can have $\mathbb{G}$ local martingale deflators. A suitable theoretical framework is set up in this paper, within which necessary/sufficient conditions for the problem to be solved have been proved. Under these conditions, we will construct $\mathbb{G}$ local martingale deflators for $S^{\tau-}$ or for $S^{\tau}$. Among others, it is proved that $\mathbb{G}$ local martingale deflators are multiples of $\mathbb{F}$ local martingale deflators, with a multiplicator coming from the multiplicative decomposition of the Az\'ema supermartingale of $\tau$. The proofs of the necessary/sufficient conditions require various results to be established about Az\'ema supermartingale, about local martingale deflator, about filtration enlargement, which are interesting in themselves. Our study is based on a filtration enlargement setting. For applications, it is important to have a method to infer the existence of such setting from the knowledge of the market information. This question is discussed at the end of the paper.
Date: 2014-05, Revised 2016-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1405.4474 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1405.4474
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().