EconPapers    
Economics at your fingertips  
 

Optimal investment with time-varying stochastic endowments

Christoph Belak, An Chen, Carla Mereu and Robert Stelzer

Papers from arXiv.org

Abstract: This paper considers a utility maximization and optimal asset allocation problem in the presence of a stochastic endowment that cannot be fully hedged through trading in the financial market. After studying continuity properties of the value function for general utility functions, we rely on the dynamic programming approach to solve the optimization problem for power utility investors including the empirically relevant and mathematically challenging case of relative risk aversion larger than one. For this, we argue that the value function is the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation. The homogeneity of the value function is then used to reduce the HJB equation by one dimension, which allows us to prove that the value function is even a classical solution thereof. Using this, an optimal strategy is derived and its asymptotic behavior in the large wealth regime is discussed.

Date: 2014-06, Revised 2022-02
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1406.6245 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1406.6245

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1406.6245