A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization
Giovanni Fasano ()
Papers from arXiv.org
Abstract:
In this paper we introduce a parameter dependent class of Krylov-based methods, namely CD, for the solution of symmetric linear systems. We give evidence that in our proposal we generate sequences of conjugate directions, extending some properties of the standard Conjugate Gradient (CG) method, in order to preserve the conjugacy. For specific values of the parameters in our framework we obtain schemes equivalent to both the CG and the scaled-CG. We also prove the finite convergence of the algorithms in CD, and we provide some error analysis. Finally, preconditioning is introduced for CD, and we show that standard error bounds for the preconditioned CG also hold for the preconditioned CD.
Date: 2014-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1408.6043 Latest version (application/pdf)
Related works:
Journal Article: A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1408.6043
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().