EconPapers    
Economics at your fingertips  
 

Optimal Execution with Dynamic Order Flow Imbalance

Kyle Bechler and Mike Ludkovski

Papers from arXiv.org

Abstract: We examine optimal execution models that take into account both market microstructure impact and informational costs. Informational footprint is related to order flow and is represented by the trader's influence on the flow imbalance process, while microstructure influence is captured by instantaneous price impact. We propose a continuous-time stochastic control problem that balances between these two costs. Incorporating order flow imbalance leads to the consideration of the current market state and specifically whether one's orders lean with or against the prevailing order flow, key components often ignored by execution models in the literature. In particular, to react to changing order flow, we endogenize the trading horizon $T$. After developing the general indefinite-horizon formulation, we investigate several tractable approximations that sequentially optimize over price impact and over $T$. These approximations, especially a dynamic version based on receding horizon control, are shown to be very accurate and connect to the prevailing Almgren-Chriss framework. We also discuss features of empirical order flow and links between our model and "Optimal Execution Horizon" by Easley et al (Mathematical Finance, 2013).

Date: 2014-09, Revised 2014-10
New Economics Papers: this item is included in nep-ger and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1409.2618 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1409.2618

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1409.2618