EconPapers    
Economics at your fingertips  
 

Turnpike Property and Convergence Rate for an Investment Model with General Utility Functions

Baojun Bian and Harry Zheng

Papers from arXiv.org

Abstract: In this paper we aim to address two questions faced by a long-term investor with a power-type utility at high levels of wealth: one is whether the turnpike property still holds for a general utility that is not necessarily differentiable or strictly concave, the other is whether the error and the convergence rate of the turnpike property can be estimated. We give positive answers to both questions. To achieve these results, we first show that there is a classical solution to the HJB equation and give a representation of the solution in terms of the dual function of the solution to the dual HJB equation. We demonstrate the usefulness of that representation with some nontrivial examples that would be difficult to solve with the trial and error method. We then combine the dual method and the partial differential equation method to give a direct proof to the turnpike property and to estimate the error and the convergence rate of the optimal policy when the utility function is continuously differentiable and strictly concave. We finally relax the conditions of the utility function and provide some sufficient conditions that guarantee the turnpike property and the convergence rate in terms of both primal and dual utility functions.

Date: 2014-09
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1409.7802 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1409.7802

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1409.7802