Multi-asset consumption-investment problems with infinite transaction costs
David Hobson and
Yeqi Zhu
Papers from arXiv.org
Abstract:
The subject of this paper is an optimal consumption/optimal portfolio problem with transaction costs and with multiple risky assets. In our model the transaction costs take a special form in that transaction costs on purchases of one of the risky assets (the endowed asset) are infinite, and transaction costs involving the other risky assets are zero. Effectively, the endowed asset can only be sold. In general, multi-asset optional consumption/optimal portfolio problems are very challenging, but the extra structure we introduce allows us to make significant progress towards an analytical solution. For an agent with CRRA utility we completely characterise the different types of optimal behaviours. These include always selling the entire holdings of the endowed asset immediately, selling the endowed asset whenever the ratio of the value of the holdings of the endowed asset to other wealth gets above a critical ratio, and selling the endowed asset only when other wealth is zero. This characterisation is in terms of solutions of a boundary crossing problem for a first order ODE. The technical contribution is to show that the problem of solving the HJB equation, which is a second order, non-linear PDE subject to smooth fit at an unknown free boundary, can be reduced to this much simpler problem involving an explicit first order ODE. This technical contribution is at the heart of our analytical and numerical results, and allows us to prove monotonicity of the critical exercise threshold and the certainty equivalent value in the model parameters.
Date: 2014-09
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1409.8037 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1409.8037
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().