EconPapers    
Economics at your fingertips  
 

Are news important to predict large losses?

Mauro Bernardi, Leopoldo Catania () and Lea Petrella

Papers from arXiv.org

Abstract: In this paper we investigate the impact of news to predict extreme financial returns using high frequency data. We consider several model specifications differing for the dynamic property of the underlying stochastic process as well as for the innovation process. Since news are essentially qualitative measures, they are firstly transformed into quantitative measures which are subsequently introduced as exogenous regressors into the conditional volatility dynamics. Three basic sentiment indexes are constructed starting from three list of words defined by historical market news response and by a discriminant analysis. Models are evaluated in terms of their predictive accuracy to forecast out-of-sample Value-at-Risk of the STOXX Europe 600 sectors at different confidence levels using several statistic tests and the Model Confidence Set procedure of Hansen et al. (2011). Since the Hansen's procedure usually delivers a set of models having the same VaR predictive ability, we propose a new forecasting combination technique that dynamically weights the VaR predictions obtained by the models belonging to the optimal final set. Our results confirms that the inclusion of exogenous information as well as the right specification of the returns' conditional distribution significantly decrease the number of actual versus expected VaR violations towards one, as this is especially true for higher confidence levels.

Date: 2014-10, Revised 2014-10
New Economics Papers: this item is included in nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/1410.6898 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1410.6898

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1410.6898