EconPapers    
Economics at your fingertips  
 

Evolving intraday foreign exchange trading strategies utilizing multiple instruments price series

Simone Cirillo, Stefan Lloyd and Peter Nordin

Papers from arXiv.org

Abstract: We propose a Genetic Programming architecture for the generation of foreign exchange trading strategies. The system's principal features are the evolution of free-form strategies which do not rely on any prior models and the utilization of price series from multiple instruments as input data. This latter feature constitutes an innovation with respect to previous works documented in literature. In this article we utilize Open, High, Low, Close bar data at a 5 minutes frequency for the AUD.USD, EUR.USD, GBP.USD and USD.JPY currency pairs. We will test the implementation analyzing the in-sample and out-of-sample performance of strategies for trading the USD.JPY obtained across multiple algorithm runs. We will also evaluate the differences between strategies selected according to two different criteria: one relies on the fitness obtained on the training set only, the second one makes use of an additional validation dataset. Strategy activity and trade accuracy are remarkably stable between in and out of sample results. From a profitability aspect, the two criteria both result in strategies successful on out-of-sample data but exhibiting different characteristics. The overall best performing out-of-sample strategy achieves a yearly return of 19%.

Date: 2014-11
New Economics Papers: this item is included in nep-cse and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1411.2153 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1411.2153

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1411.2153