Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension
Demian Pouzo
Papers from arXiv.org
Abstract:
This paper establishes consistency of the weighted bootstrap for quadratic forms $\left( n^{-1/2} \sum_{i=1}^{n} Z_{i,n} \right)^{T}\left( n^{-1/2} \sum_{i=1}^{n} Z_{i,n} \right)$ where $(Z_{i,n})_{i=1}^{n}$ are mean zero, independent $\mathbb{R}^{d}$-valued random variables and $d=d(n)$ is allowed to grow with the sample size $n$, slower than $n^{1/4}$. The proof relies on an adaptation of Lindeberg interpolation technique whereby we simplify the original problem to a Gaussian approximation problem. We apply our bootstrap results to model-specification testing problems when the number of moments is allowed to grow with the sample size.
Date: 2014-11, Revised 2015-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1411.2701 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1411.2701
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().