A new perspective on the fundamental theorem of asset pricing for large financial markets
Christa Cuchiero,
Irene Klein and
Josef Teichmann
Papers from arXiv.org
Abstract:
In the context of large financial markets we formulate the notion of \emph{no asymptotic free lunch with vanishing risk} (NAFLVR), under which we can prove a version of the fundamental theorem of asset pricing (FTAP) in markets with an (even uncountably) infinite number of assets, as it is for instance the case in bond markets. We work in the general setting of admissible portfolio wealth processes as laid down by Y. Kabanov \cite{kab:97} under a substantially relaxed concatenation property and adapt the FTAP proof variant obtained in \cite{CT:14} for the classical small market situation to large financial markets. In the case of countably many assets, our setting includes the large financial market model considered by M. De Donno et al. \cite{DGP:05} and its abstract integration theory. The notion of (NAFLVR) turns out to be an economically meaningful "no arbitrage" condition (in particular not involving weak-$*$-closures), and, (NAFLVR) is equivalent to the existence of a separating measure. Furthermore we show -- by means of a counterexample -- that the existence of an equivalent separating measure does not lead to an equivalent $\sigma$-martingale measure, even in a countable large financial market situation.
Date: 2014-12, Revised 2023-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/1412.7562 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1412.7562
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().