EconPapers    
Economics at your fingertips  
 

Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets

Andrei Cozma, Matthieu Mariapragassam and Christoph Reisinger

Papers from arXiv.org

Abstract: We study the Heston-Cox-Ingersoll-Ross++ stochastic-local volatility model in the context of foreign exchange markets and propose a Monte Carlo simulation scheme which combines the full truncation Euler scheme for the stochastic volatility component and the stochastic domestic and foreign short interest rates with the log-Euler scheme for the exchange rate. We establish the exponential integrability of full truncation Euler approximations for the Cox-Ingersoll-Ross process and find a lower bound on the explosion time of these exponential moments. Under a full correlation structure and a realistic set of assumptions on the so-called leverage function, we prove the strong convergence of the exchange rate approximations and deduce the convergence of Monte Carlo estimators for a number of vanilla and path-dependent options. Then, we perform a series of numerical experiments for an autocallable barrier dual currency note.

Date: 2015-01, Revised 2016-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1501.06084 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1501.06084

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1501.06084