Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk
Gildas Ratovomirija
Papers from arXiv.org
Abstract:
In this paper, we address the aggregation of dependent stop loss reinsurance risks where the dependence among the ceding insurer(s) risks is governed by the Sarmanov distribution and each individual risk belongs to the class of Erlang mixtures. We investigate the effects of the ceding insurer(s) risk dependencies on the reinsurer risk profile by deriving a closed formula for the distribution function of the aggregated stop loss reinsurance risk. Furthermore, diversification effects from aggregating reinsurance risks are examined by deriving a closed expression for the risk capital needed for the whole portfolio of the reinsurer and also the allocated risk capital for each business unit under the TVaR capital allocation principle. Moreover, given the risk capital that the reinsurer holds, we express the default probability of the reinsurer analytically. In case the reinsurer is in default, we determine analytical expressions for the amount of the aggregate reinsured unpaid losses and the unpaid losses of each reinsured line of business of the ceding insurer(s). These results are illustrated by numerical examples.
Date: 2015-01
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1501.07297 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1501.07297
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().