A dynamic optimal execution strategy under stochastic price recovery
Masashi Ieda
Papers from arXiv.org
Abstract:
In the present paper, we study the optimal execution problem under stochastic price recovery based on limit order book dynamics. We model price recovery after execution of a large order by accelerating the arrival of the refilling order, which is defined as a Cox process whose intensity increases by the degree of the market impact. We include not only the market order but also the limit order in our strategy in a restricted fashion. We formulate the problem as a combined stochastic control problem over a finite time horizon. The corresponding Hamilton-Jacobi-Bellman quasi-variational inequality is solved numerically. The optimal strategy obtained consists of three components: (i) the initial large trade; (ii) the unscheduled small trades during the period; (iii) the terminal large trade. The size and timing of the trade is governed by the tolerance for market impact depending on the state at each time step, and hence the strategy behaves dynamically. We also provide competitive results due to inclusion of the limit order, even though a limit order is allowed under conservative evaluation of the execution price.
Date: 2015-02
New Economics Papers: this item is included in nep-dge and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1502.04521 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1502.04521
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().