EconPapers    
Economics at your fingertips  
 

Principal Components Analysis for Semimartingales and Stochastic PDE

Alberto Ohashi and Alexandre B Simas

Papers from arXiv.org

Abstract: In this work, we develop a novel principal component analysis (PCA) for semimartingales by introducing a suitable spectral analysis for the quadratic variation operator. Motivated by high-dimensional complex systems typically found in interest rate markets, we investigate correlation in high-dimensional high-frequency data generated by continuous semimartingales. In contrast to the traditional PCA methodology, the directions of large variations are not deterministic, but rather they are bounded variation adapted processes which maximize quadratic variation almost surely. This allows us to reduce dimensionality from high-dimensional semimartingale systems in terms of quadratic covariation rather than the usual covariance concept. The proposed methodology allows us to investigate space-time data driven by multi-dimensional latent semimartingale state processes. The theory is applied to discretely-observed stochastic PDEs which admit finite-dimensional realizations. In particular, we provide consistent estimators for finite-dimensional invariant manifolds for Heath-Jarrow-Morton models. More importantly, components of the invariant manifold associated to volatility and drift dynamics are consistently estimated and identified. The proposed methodology is illustrated with both simulated and real data sets.

Date: 2015-03, Revised 2016-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1503.05909 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1503.05909

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1503.05909