Optimal Position Management for a Market Maker with Stochastic Price Impacts
Masaaki Fujii
Papers from arXiv.org
Abstract:
This paper deals with an optimal position management problem for a market maker who has to face uncertain customer order flows in an illiquid market, where the market maker's continuous trading incurs a stochastic linear price impact. Although the execution timing is uncertain, the market maker can also ask its OTC counterparties to transact a block trade without causing a direct price impact. We adopt quite generic stochastic processes of the securities, order flows, price impacts, quadratic penalties as well as security borrowing/lending rates. The solution of the market maker's optimal position-management strategy is represented by a stochastic Hamilton-Jacobi-Bellman equation, which can be decomposed into three (one non-linear and two linear) backward stochastic differential equations (BSDEs). We provide the verification using the standard BSDE techniques for a single security case. For a multiple-security case, we make use of the connection of the non-linear BSDE to a special type of backward stochastic Riccati differential equation (BSRDE) whose properties were studied by Bismut(1976). We also propose a perturbative approximation scheme for the resultant BSRDE, which only requires a system of linear ODEs to be solved at each expansion order. Its justification and the convergence rate are also given.
Date: 2015-03, Revised 2015-09
New Economics Papers: this item is included in nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1503.07007 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1503.07007
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().