Black-Scholes in a CEV random environment
Antoine Jacquier () and
Patrick Roome
Papers from arXiv.org
Abstract:
Classical (It\^o diffusions) stochastic volatility models are not able to capture the steepness of small-maturity implied volatility smiles. Jumps, in particular exponential L\'evy and affine models, which exhibit small-maturity exploding smiles, have historically been proposed to remedy this (see \cite{Tank} for an overview), and more recently rough volatility models \cite{AlosLeon, Fukasawa}. We suggest here a different route, randomising the Black-Scholes variance by a CEV-generated distribution, which allows us to modulate the rate of explosion (through the CEV exponent) of the implied volatility for small maturities. The range of rates includes behaviours similar to exponential L\'evy models and fractional stochastic volatility models.
Date: 2015-03, Revised 2017-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1503.08082 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1503.08082
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().