Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes
Thibault Jaisson and
Mathieu Rosenbaum
Papers from arXiv.org
Abstract:
We investigate the asymptotic behavior as time goes to infinity of Hawkes processes whose regression kernel has $L^1$ norm close to one and power law tail of the form $x^{-(1+\alpha)}$, with $\alpha\in(0,1)$. We in particular prove that when $\alpha\in(1/2,1)$, after suitable rescaling, their law converges to that of a kind of integrated fractional Cox-Ingersoll-Ross process, with associated Hurst parameter $H=\alpha-1/2$. This result is in contrast to the case of a regression kernel with light tail, where a classical Brownian CIR process is obtained at the limit. Interestingly, it shows that persistence properties in the point process can lead to an irregular behavior of the limiting process. This theoretical result enables us to give an agent-based foundation to some recent findings about the rough nature of volatility in financial markets.
Date: 2015-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1504.03100 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1504.03100
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().