Estimating the Algorithmic Complexity of Stock Markets
Olivier Brandouy (),
Jean-Paul Delahaye and
Lin Ma
Papers from arXiv.org
Abstract:
Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified.
Date: 2015-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1504.04296 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1504.04296
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().