EconPapers    
Economics at your fingertips  
 

Forecasting the term structure of crude oil futures prices with neural networks

Jozef Baruník () and Barbora Malinska

Papers from arXiv.org

Abstract: The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed framework is empirically tested on 24 years of crude oil futures prices covering several important recessions and crisis periods. We find 1-month, 3-month, 6-month and 12-month-ahead forecasts obtained from focused time-delay neural network to be significantly more accurate than forecasts from other benchmark models. The proposed forecasting strategy produces the lowest errors across all times to maturity.

New Economics Papers: this item is included in nep-cmp, nep-ene and nep-for
Date: 2015-04
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1504.04819 Latest version (application/pdf)

Related works:
Journal Article: Forecasting the term structure of crude oil futures prices with neural networks (2016) Downloads
Working Paper: Forecasting the Term Structure of Crude Oil Futures Prices with Neural Networks (2015) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1504.04819

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-04-18
Handle: RePEc:arx:papers:1504.04819