Noise Robust Online Inference for Linear Dynamic Systems
Saikat Saha
Papers from arXiv.org
Abstract:
We revisit the Bayesian online inference problems for the linear dynamic systems (LDS) under non- Gaussian environment. The noises can naturally be non-Gaussian (skewed and/or heavy tailed) or to accommodate spurious observations, noises can be modeled as heavy tailed. However, at the cost of such noise robustness, the performance may degrade when such spurious observations are absent. Therefore, any inference engine should not only be robust to noise outlier, but also be adaptive to potentially unknown and time varying noise parameters; yet it should be scalable and easy to implement. To address them, we envisage here a new noise adaptive Rao-Blackwellized particle filter (RBPF), by leveraging a hierarchically Gaussian model as a proxy for any non-Gaussian (process or measurement) noise density. This leads to a conditionally linear Gaussian model (CLGM), that is tractable. However, this framework requires a valid transition kernel for the intractable state, targeted by the particle filter (PF). This is typically unknown. We outline how such kernel can be constructed provably, at least for certain classes encompassing many commonly occurring non-Gaussian noises, using auxiliary latent variable approach. The efficacy of this RBPF algorithm is demonstrated through numerical studies.
Date: 2015-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1504.05723 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1504.05723
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().