EconPapers    
Economics at your fingertips  
 

The Binomial Tree Method and Explicit Difference Schemes for American Options with Time Dependent Coefficients

Hyong-chol O, Song-gon Jang, Il-Gwang Jon, Mun-Chol Kim, Gyong-Ryol Kim and Hak-Yong Kim

Papers from arXiv.org

Abstract: Binomial tree methods (BTM) and explicit difference schemes (EDS) for the variational inequality model of American options with time dependent coefficients are studied. When volatility is time dependent, it is not reasonable to assume that the dynamics of the underlying asset's price forms a binomial tree if a partition of time interval with equal parts is used. A time interval partition method that allows binomial tree dynamics of the underlying asset's price is provided. Conditions under which the prices of American option by BTM and EDS have the monotonic property on time variable are found. Using convergence of EDS for variational inequality model of American options to viscosity solution the decreasing property of the price of American put options and increasing property of the optimal exercise boundary on time variable are proved. First, put options are considered. Then the linear homogeneity and call-put symmetry of the price functions in the BTM and the EDS for the variational inequality model of American options with time dependent coefficients are studied and using them call options are studied.

Date: 2015-05, Revised 2018-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1505.04573 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1505.04573

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1505.04573