Product-Mix Auctions and Tropical Geometry
Ngoc Mai Tran and
Josephine Yu
Papers from arXiv.org
Abstract:
In a recent and ongoing work, Baldwin and Klemperer explored a connection between tropical geometry and economics. They gave a sufficient condition for the existence of competitive equilibrium in product-mix auctions of indivisible goods. This result, which we call the Unimodularity Theorem, can also be traced back to the work of Danilov, Koshevoy, and Murota in discrete convex analysis. We give a new proof of the Unimodularity Theorem via the classical unimodularity theorem in integer programming. We give a unified treatment of these results via tropical geometry and formulate a new sufficient condition for competitive equilibrium when there are only two types of product. Generalizations of our theorem in higher dimensions are equivalent to various forms of the Oda conjecture in algebraic geometry.
Date: 2015-05, Revised 2017-10
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1505.05737 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1505.05737
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().