Optimal Multiple Stopping with Negative Discount Rate and Random Refraction Times under Levy Models
Tim Leung,
Kazutoshi Yamazaki and
Hongzhong Zhang
Papers from arXiv.org
Abstract:
This paper studies a class of optimal multiple stopping problems driven by L\'evy processes. Our model allows for a negative effective discount rate, which arises in a number of financial applications, including stock loans and real options, where the strike price can potentially grow at a higher rate than the original discount factor. Moreover, successive exercise opportunities are separated by i.i.d. random refraction times. Under a wide class of two-sided L\'evy models with a general random refraction time, we rigorously show that the optimal strategy to exercise successive call options is uniquely characterized by a sequence of up-crossing times. The corresponding optimal thresholds are determined explicitly in the single stopping case and recursively in the multiple stopping case.
Date: 2015-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/1505.07313 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1505.07313
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().